## The Isolator

By HUGO GERNSBACK
MEMBER AMERICAN PHYSICAL SOCIETY


The author at work in his private study aded by the Isolator. Outside noises being eliminated the worker can concentrate with ease upon the subject at hand.


## Eladio Dieste

MÉTODOS DE CÁLCULO • CALCULATION METHODS




por tanto, ya que $\theta=0$ para $s=\frac{1}{2}$

$$
\begin{aligned}
& -2 \sqrt{\frac{\rho}{\theta}} \cdot \frac{\pi}{2}-\int_{0}^{0} \frac{d \theta}{\sqrt{\operatorname{sen}^{2} \frac{\theta_{0}}{2}-\operatorname{sen}^{2} \frac{\theta}{2}}} \\
& \sqrt{\frac{\rho}{\theta} \cdot} \cdot=\int_{0}^{\omega} \frac{d \theta}{\sqrt{\operatorname{sen}^{2} \frac{\theta_{0}}{2}-\operatorname{sen}^{2} \frac{\theta}{2}}}
\end{aligned}
$$

Sean:

$$
\operatorname{sen} \cdot \frac{\theta_{0}}{2}-\mathrm{a}, \operatorname{sen} \frac{\theta}{2}-\mathrm{a} \cdot \operatorname{sen} \varphi
$$

por tanto, para: $\theta=0, \varphi=0 ; \quad$ Para $\theta=\theta_{\omega} \quad \varphi=\frac{\pi}{2}$;

$$
\sqrt{\operatorname{sen}^{2} \frac{\theta_{0}}{2}-\operatorname{sen}^{2} \frac{\theta}{2}}=\mathrm{a} \cdot \cos \varphi
$$

$$
\cos \frac{\theta}{2} \cdot \frac{1}{2} d \theta=\theta \cdot \cos \varphi \cdot d \varphi
$$

por tanto

$$
d \theta=\frac{2 \cdot \sigma \cdot \cos \varphi \cdot d \varphi}{\sqrt{1-\sigma^{2} \operatorname{sen}^{2} \theta}}
$$

(4)

Luego:

$$
\frac{\bar{\rho}}{\bar{\theta}} \cdot \mathrm{t}=2 \int_{0}^{\infty} \frac{d \varphi}{\sqrt{1-\sigma^{\prime} \operatorname{sen}^{2} \varphi}}
$$

El valor mínimo de la integral se tiene sic $0=0$; o sea sil $\theta_{0}=0$; 0 , lo que es lo mismo, sil no hay deforma: ción. Luego, para que haya deformación, $\boldsymbol{P}$ debe ser mayor que el valor correspondiente al minimo de le integral.
Si $a=0$, la integral vale $\pi / 2$ y el valor correspondiente da:

$$
\rho=\frac{\pi^{2} \boldsymbol{\theta}}{r^{2}}=p \text { critica de Euler }
$$

Para que la integral tenga un valor $>\pi / 2$ (en otros términos para que exista una configuración de quilibrio posible con la columna pandeada), $P$ debe ser mayor que

